An Example in Complex L¹ Approximation

EDWARD R. ROZEMA

Department of Mathematics, The University of Tennessee at Chattanooga, Chattanooga, Tennessee 37401

Communicated by T. J. Rivlin

Received May 24, 1975

Let (Ω, μ) be a nonatomic measure space, K either the set R of real numbers or the set C of complex numbers, and $L^1(\mu; K)$ the space of K-valued integrable functions on Ω . Suppose M is a finite-dimensional subspace of $L^1(\mu; K)$; let S be the set of elements in $L^1(\mu; K)$ that have more than one best approximation from M, and let S' be the set of elements whose set of best approximations from M contains a relatively open subset of M. In the real case, Havinson and Romanova have shown that both S and S' are dense in $L^1(\mu; R)$. In the present paper, a result of Kripke and Rivlin is used to show that, for K = C, μ finite, and M equal to the subspace of constant functions, S is not dense and S' is empty, thus, answering a question posed by Havinson and Romanova.

Let (Ω, μ) be a nonatomic measure space and E an arbitrary Banach space with norm $|\cdot|$. Let $\mathscr{L}^{1}(\mu; E)$ denote the space of Bochner integrable functions with seminorm $\int_{\Omega} |f(s)| d\mu(s)$; let $L^{1}(\mu; E)$ be the associated Hausdorff space. Suppose M is any finite-dimensional subspace of $L^1(\mu; E)$. In [5, 6], it was shown that, even though M fails to be Chebyshev, it is (in the terminology of Garkavi [1]) almost Chebyshev (i.e., the set S of elements that do not have a unique best approximation is of the first category, thus, the set of elements in $L^1(\mu; E)$ with a unique best approximation is dense and of the second category). When E = R = the set of real numbers, this result was obtained (independently) by Havinson and Romanova [3]. They also showed that, for E = R, the set S' of elements that have "full nonuniqueness" (i.e., the set S' of elements for which the set of best approximations contains a relatively open subset of the subspace M) is also dense. They remarked that, for E = C = the set of complex numbers, it could be shown that M is almost Chebyshev; they asked whether S' is also dense in this case. We show here that, with μ finite and M equal to the subspace of constant functions, the set S fails to be dense and the set S' is empty.

The crux of the matter is contained in a result due to Kripke and Rivlin [4, Theorem 2.3] (see also [2]). This theorem is stated by them for a σ -finite

measure space (Ω, μ) , but this is not actually needed in their proof. (In their notation, the disjoint sets $F(\lambda)$, $\lambda \in R$, are each contained in R(f), which, as the support of an integrable function, must be σ -finite. Hence, at most a countable number of the sets $F(\lambda)$, $\lambda \in [-1, 1]$, can have positive measure. This is the only place in their proof that σ -finiteness is used.) We state the theorem in the following manner:

LEMMA (Kripke-Rivlin). Let M be a subspace of $L^1(\mu; C)$. Suppose f has two distinct best approximations, say p_1 and p_2 , from M. Let $f^* = f - \frac{1}{2}(p_1 + p_2)$ and $q = \frac{1}{2}(p_1 - p_2)$. Then, there is a nonzero $\lambda \in [-1, 1]$ and a real-valued function g, with $g(x) \in (-1, 1)$, satisfying, for almost all $x \in \Omega$,

$$\lambda q(x) = g(x) f^*(x).$$

EXAMPLE. Let μ be finite and let M be the subspace of $L^1(\mu; C)$ consisting of the constant functions. Then, the set of elements with more than one best approximation is not dense: For, apply the above lemma to M. Then, for any element f with more than one best approximation, there exist complex numbers $p_1 \neq p_2$, a real number $\lambda \neq 0$, and a real-valued function gsatisfying

$$\frac{\lambda}{2}(p_1 - p_2) = g(x) \left[f(x) - \frac{1}{2}(p_1 + p_2) \right]$$

for almost all $x \in \Omega$. Hence, $g(x) \neq 0$ for such x. Therefore,

$$f(x) = \frac{\lambda}{2g(x)} (p_1 - p_2) + \frac{1}{2} (p_1 + p_2)$$

for almost all $x \in \Omega$. Since λ and g(x) are real numbers, we conclude that, for almost all $x \in \Omega$, f(x) lies on the line in the complex-plane generated by p_1 and p_2 . Clearly, the set of functions f with this property fails to be dense. It is also clear from this argument that the set of best approximations to f is contained in the line generated by p_1 and p_2 . Thus, even though M is not Chebyshev, there is no element in $L^1(\mu; C)$ whose set of best approximations contains a relatively open subset of M. That is, S' is empty.

References

- 1. A. L. GARKAVI, On Chebyshev and almost Chebyshev subspaces, *Izv. Akad. Nauk* SSSR Ser. Mat. 28 (1964), 799–818; English translation in Amer. Math. Soc. Transl. 96 (1970), 153–175.
- S. JA. HAVINSON, On uniqueness of functions of best approximation in the metric of the space L¹, (Russian), *Izv. Akad. Nauk SSSR Ser. Mat.* 22 (1958), 243–270.

L^1 Approximation

- S. JA. HAVINSON AND Z. S. ROMANOVA, Approximation properties of finite-dimensional subspaces in L¹, Mat. Sb. 89 (1972), 3-15; English translation in Math. USSR Sb. 18 (1972), 1-14.
- 4. B. R. KRIPKE AND T. J. RIVLIN, Approximation in the metric of $L^1(X, \mu)$, Trans. Amer. Math. Soc. 119 (1965), 101–122.
- 5. E. R. ROZEMA, Almost Chebyshev subspaces of $L^1(\mu; E)$, Ph.D. Dissertation, Purdue University, August, 1972.
- 6. E. R. ROZEMA, Almost Chebyshev subspaces of $L^1(\mu; E)$, Pacific J. Math. to appear.